Package a Docker Image for Model Deployment (Python)
This doc shows how to package a model into a format-valid docker image for the PrimeHub model deployment feature.
The PrimeHub model deployment feature is based on Seldon. This doc takes reference from Seldon official documentations and other resources which are listed in the last part.
Prerequisites
- Docker: https://www.docker.com/products/docker-desktop
- S2I (Source-To-Image): https://github.com/openshift/source-to-image#installation
Check everything is ready to go by running:
s2i usage seldonio/seldon-core-s2i-python3:0.18
Prepare the Model and Code (Python)
- Please use Python 3.6 (Recommended) 
- Create a - requirements.txtfile and write down all required packages- keras tensorflow numpy ...
- Create a - .s2ifolder and create a- .s2i/environmentfile with the following content:- MODEL_NAME=MyModel API_TYPE=REST SERVICE_TYPE=MODEL PERSISTENCE=0
- Create a - MyModel.pyfile with the following example template:- class MyModel(object): """ Model template. You can load your model parameters in __init__ from a location accessible at runtime. """ def __init__(self): """ Add any initialization parameters. These will be passed at runtime from the graph definition parameters defined in your seldondeployment kubernetes resource manifest. """ print("Initializing") def predict(self, X, features_names=None): """ Return a prediction. Parameters ---------- X : array-like feature_names : array of feature names (optional) """ print("Predict called - will run identity function") return X- File and class name MyModelshould be the same as MODEL_NAME under.s2i/environment
- Load or initiate your model under the __init__function
- The predict method takes a numpy-array Xand list of stringfeature_names(optional), then returns an array of predictions (the return array should be at least 2-dimensional)
 - More detailed information on how to write the Python file for model deployment in different frameworks, please refer to the section Example Codes for Different Frameworks. 
- File and class name 
Build the Image
Make sure you are in the folder that includes requirements.txt, .s2i/environment, python file for model deployment, and model file...etc.
If this folder is managed by Git, please commit all changes into the git.
We will use seldonio/seldon-core-s2i-python3:0.18 as a base image, installing environment and packaging our model file into the target, my-model-image. You can use the following command to package the docker image:
(Using seldonio/seldon-core-s2i-python3 instead if using Python 3 rather than Python 3.6)
 s2i build . seldonio/seldon-core-s2i-python3:0.18 my-model-image
Then check the image by docker images.
REPOSITORY                         TAG                 IMAGE ID            CREATED             SIZE
my-model-image                     latest              4a0f28ee4f4c        3 minutes ago       1.66GB
seldonio/seldon-core-s2i-python3   0.18                0380e4efa66e        7 weeks ago         794MB
Test the Image
In order to make sure your model image is well packaged, you can run your model as a Docker container locally:
docker run -p 5000:5000 --rm my-model-image
and curl:
    curl -X POST localhost:5000/api/v1.0/predictions \
         -H 'Content-Type: application/json' \
         -d '{ "data": { "ndarray": [[5.964,4.006,2.081,1.031]]}}'
Replace ndarray content in curl example according to your application.
You have built the docker image for a PrimeHub model deployment successfully now.
Push the Image
Next, push the image into the docker hub (or other docker registries) and check PrimeHub tutorial to serve the model under PrimeHub.
Tag your docker image:
docker tag my-model-image test-repo/my-model-image
Then push to docker registry:
docker push test-repo/my-model-image
(Optional) Example Codes for Different Frameworks
Here are some Python snippets of how to export a model file then load it and run the prediction in another file. By following the Python wrapper format, PrimeHub supports various popular ML frameworks to serve models.
Tensorflow 1
- Output a model file - model/deep_mnist_model- saver = tf.train.Saver() saver.save(sess, "model/deep_mnist_model")
- MyModel.py, load a model and run a prediction- import tensorflow as tf import numpy as np import os class DeepMnist(object): def __init__(self): self.loaded = False def load(self): print("Loading model",os.getpid()) self.sess = tf.Session() saver = tf.train.import_meta_graph("model/deep_mnist_model.meta") saver.restore(self.sess,tf.train.latest_checkpoint("./model/")) graph = tf.get_default_graph() self.x = graph.get_tensor_by_name("x:0") self.y = graph.get_tensor_by_name("y:0") self.loaded = True print("Loaded model") def predict(self,X,feature_names): if not self.loaded: self.load() predictions = self.sess.run(self.y,feed_dict={self.x:X}) return predictions.astype(np.float64)
Tensorflow 2
- Output a model file - 1- model.save("1")
- MyModel.py, load a model and run a prediction- import tensorflow as tf class MNISTModel: def __init__(self): self._model = tf.keras.models.load_model('1') def predict(self, X, feature_names=None, meta=None): output = self._model.predict(X) probability = output[0] predicted_number = tf.math.argmax(probability) return {"predicted_number": predicted_number.numpy().tolist(), "probability": probability.tolist()}
Keras
- Output a model file - keras-mnist.h5- model.save('keras-mnist.h5')
- MyModel.py, load a model and run a prediction- from keras.models import load_model from PIL import Image from io import BytesIO import numpy as np class MyModel(object): def __init__(self): self.model = load_model('keras-mnist.h5') self.model._make_predict_function() def predict(self,X,features_names): imageStream = BytesIO(X) image = Image.open(imageStream).resize((28, 28)).convert('L') data = np.asarray(image) data = np.expand_dims(data, axis=0) data = np.expand_dims(data, axis=-1) return self.model.predict(data)
Scikit-learn
- Output a model file - IrisClassifier.sav- joblib.dump(p, "IrisClassifier.sav")
- MyModel.py, load a model and run a prediction- from sklearn.externals import joblib class IrisClassifier(object): def __init__(self): self.model = joblib.load('IrisClassifier.sav') def predict(self,X,features_names): return self.model.predict_proba(X)
Pytorch
- Output a model file - mnist_cnn.pt- torch.save(model.state_dict(), "mnist_cnn.pt")
- MyModel.py, load a model and run a prediction- import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.softmax(x, dim=1) return output class MNISTModel: def __init__(self): self._model = Net() self._model.load_state_dict(torch.load("mnist_cnn.pt")) self._model.eval() def predict(self, x, names): output = self._model(torch.from_numpy(x).float()) return {"probability": output.tolist()}
XGBoost
- Output a model file - xgboost.model- bst = xgb.train(...) bst.save_model('xgboost.model')
- MyModel.py, load a model and run a prediction- import xgboost as xgb class MyModel(object): def __init__(self): self.bst = xgb.Booster({'nthread':4}) self.bst.load_model("xgboost.model") def predict(self,X,features_names): dtest = xgb.DMatrix(X) return self.bst.predict(dtest)
MXNet
- Output a model file - mx-model___- model_prefix = 'mx-model' checkpoint = mx.callback.do_checkpoint(model_prefix) mod.fit(..., epoch_end_callback=checkpoint)
- MyModel.py, load a model and run a prediction- import mxnet as mx from PIL import Image import numpy as np from io import BytesIO class MyModel(object): def __init__(self): model_prefix = 'mx-model' epoch_num = 2 self.model = mx.mod.Module.load(model_prefix, epoch_num) data_shape = [("data", (1, 28, 28, 1))] label_shape = [("softmax_label", (1,))] self.model.bind(data_shape, label_shape) def predict(self,X,features_names): imageStream = BytesIO(X) image = Image.open(imageStream).resize((28, 28)).convert('L') data = np.asarray(image) data = np.expand_dims(data, axis=0) data = np.expand_dims(data, axis=-1) return self.model.predict(data).asnumpy()
LightGBM
- Output a model file - model.pkl- gbm = lgb.train(...) with open('model.pkl', 'wb') as fout: pickle.dump(gbm, fout)
- MyModel.py, load a model and run a prediction- import pickle class MyModel(object): def __init__(self): with open('model.pkl', 'rb') as fin: self.pkl_bst = pickle.load(fin) def predict(self,X,features_names): return self.pkl_bst.predict(X)
Reference
- https://docs.seldon.io/projects/seldon-core/en/latest/python/python_wrapping_s2i.html
- https://github.com/SeldonIO/seldon-core/tree/master/examples
- https://docs.seldon.io/projects/seldon-core/en/latest/wrappers/language_wrappers.html
- https://docs.seldon.io/projects/seldon-core/en/latest/python/python_component.html
- https://docs.seldon.io/projects/seldon-core/en/latest/workflow/serving.html
