SKLearn server
Enterprise
  Applicable to Enterprise tier only
Model Information
Basic
| Property | Description | 
|---|---|
| Model Image | seldonio/sklearnserver_rest:1.3.0 | 
| Input | ndarray | 
| Output | ndarray | 
| Repository | Link | 
Model URI Structure
<model uri>
└── model.joblib
- model.joblib: The model file should be saved by the joblibformat. For more information, please see scikit-learn Model persistence document
How It Works
You can check the detailed code in the Github. Here, we demonstrate by the pseudo-code.
Load the model
def __init__(self, model_uri):
    model_file = load_from_model_uri(model_uri)
    self._joblib = joblib.load(model_file)
Predict
def predict(self, X):
    return self._joblib.predict_proba(X)
Example
The example uses the scikit-learn iris dataset
| Property | Description | 
|---|---|
| Model Image | seldonio/sklearnserver_rest:1.3.0 | 
| Model URI | gs://seldon-models/sklearn/iris | 
Test Request
curl -X POST http://localhost:5000/api/v1.0/predictions \
    -H 'Content-Type: application/json' \
    -d '{ "data": {"tensor": {"shape": [1, 4], "values": [5.3, 3.5, 1.4, 0.2]}} }'
Test Result
{"data":{"names":["t:0","t:1","t:2"],"tensor":{"shape":[1,3],"values":[0.8700986370655746,0.1298937698872714,7.593047154034911e-06]}},"meta":{}}
