Package a Model Image for Python
This doc shows how to package a model into a format-valid docker image for the PrimeHub model deployment feature.
The PrimeHub model deployment feature is based on Seldon. This doc takes reference from Seldon official documentations and other resources which are listed in the last part.
Prerequisites
Prepare the Model and Code (Python)
Create a
requirements.txt
file and write down all required packages.seldon-core keras tensorflow numpy ...
Create a
Dockerfile
with the following content.FROM python:3.7-slim COPY . /app WORKDIR /app RUN pip install -r requirements.txt EXPOSE 9000 # Define environment variable ENV MODEL_NAME MyModel ENV SERVICE_TYPE MODEL ENV PERSISTENCE 0 CMD exec seldon-core-microservice $MODEL_NAME --service-type $SERVICE_TYPE --persistence $PERSISTENCE --access-log
Create a
MyModel.py
file with the following example template.class MyModel(object): """ Model template. You can load your model parameters in __init__ from a location accessible at runtime. """ def __init__(self): """ Add any initialization parameters. These will be passed at runtime from the graph definition parameters defined in your seldondeployment kubernetes resource manifest. """ print("Initializing") def predict(self, X, features_names=None): """ Return a prediction. Parameters ---------- X : array-like feature_names : array of feature names (optional) """ print("Predict called - will run identity function") return X
- File and class name
MyModel
should be the same as MODEL_NAME inDockerfile
- Load or initiate your model under the
__init__
function - The predict method takes a numpy-array
X
and list of stringfeature_names
(optional), then returns an array of predictions (the return array should be at least 2-dimensional)
More detailed information on how to write the Python file for model deployment in different frameworks, please refer to the section Example Codes for Different Frameworks.
- File and class name
Build the Image
Make sure you are in the folder that includes
requirements.txt
,Dockerfile
,python file for model deployment
, andmodel file
.Execute following command to install environment and package our model file into the target image
my-model-image
.docker build . -t my-model-image
Then check the image by
docker images
.REPOSITORY TAG IMAGE ID CREATED SIZE my-model-image latest f373fdcc10c5 3 minutes ago 2.46GB python 3.7-slim ea12296513d7 2 weeks ago 112MB
Test the Image
In order to make sure your model image is well packaged, you can run your model as a Docker container locally.
docker run -p 9000:9000 --rm my-model-image
And curl (replace
ndarray
content in curl example according to your application).curl -X POST localhost:9000/api/v1.0/predictions \ -H 'Content-Type: application/json' \ -d '{ "data": { "ndarray": [[5.964,4.006,2.081,1.031]]}}'
You have successfully built the docker image for the PrimeHub model deployment.
Push the Image
Next, push the image into the docker hub (or other docker registries) and check PrimeHub tutorial to serve the model under PrimeHub.
Tag your docker image.
docker tag my-model-image test-repo/my-model-image
Then push to docker registry.
docker push test-repo/my-model-image
(Optional) Example Codes for Different Frameworks
Here are some Python snippets of how to export a model file then load it and run the prediction in another file. By following the Python wrapper format, PrimeHub supports various popular ML frameworks to serve models.
Tensorflow 1
Output a model file
model/deep_mnist_model
saver = tf.train.Saver() saver.save(sess, "model/deep_mnist_model")
MyModel.py
, load a model and run a predictionimport tensorflow as tf import numpy as np import os class DeepMnist(object): def __init__(self): self.loaded = False def load(self): print("Loading model",os.getpid()) self.sess = tf.Session() saver = tf.train.import_meta_graph("model/deep_mnist_model.meta") saver.restore(self.sess,tf.train.latest_checkpoint("./model/")) graph = tf.get_default_graph() self.x = graph.get_tensor_by_name("x:0") self.y = graph.get_tensor_by_name("y:0") self.loaded = True print("Loaded model") def predict(self,X,feature_names): if not self.loaded: self.load() predictions = self.sess.run(self.y,feed_dict={self.x:X}) return predictions.astype(np.float64)
Tensorflow 2
Output a model file
1
model.save("1")
MyModel.py
, load a model and run a predictionimport tensorflow as tf class MNISTModel: def __init__(self): self.loaded = False def load(self): self._model = tf.keras.models.load_model('1') self.loaded = True def predict(self, X, feature_names=None, meta=None): if not self.loaded: self.load() output = self._model.predict(X) probability = output[0] predicted_number = tf.math.argmax(probability) return {"predicted_number": predicted_number.numpy().tolist(), "probability": probability.tolist()}
Keras
Output a model file
keras-mnist.h5
model.save('keras-mnist.h5')
MyModel.py
, load a model and run a predictionfrom keras.models import load_model from PIL import Image from io import BytesIO import numpy as np class MyModel(object): def __init__(self): self.loaded = False def load(self): self.model = load_model('keras-mnist.h5') self.loaded = True def predict(self,X,features_names): if not self.loaded: self.load() imageStream = BytesIO(X) image = Image.open(imageStream).resize((28, 28)).convert('L') data = np.asarray(image) data = np.expand_dims(data, axis=0) data = np.expand_dims(data, axis=-1) return self.model.predict(data)
Scikit-learn
Output a model file
IrisClassifier.sav
joblib.dump(p, "IrisClassifier.sav")
MyModel.py
, load a model and run a predictionfrom sklearn.externals import joblib class IrisClassifier(object): def __init__(self): self.model = joblib.load('IrisClassifier.sav') def predict(self,X,features_names): return self.model.predict_proba(X)
Pytorch
Output a model file
mnist_cnn.pt
torch.save(model.state_dict(), "mnist_cnn.pt")
MyModel.py
, load a model and run a predictionimport torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.softmax(x, dim=1) return output class MNISTModel: def __init__(self): self._model = Net() self._model.load_state_dict(torch.load("mnist_cnn.pt")) self._model.eval() def predict(self, x, names): output = self._model(torch.from_numpy(x).float()) return {"probability": output.tolist()}
XGBoost
Output a model file
xgboost.model
bst = xgb.train(...) bst.save_model('xgboost.model')
MyModel.py
, load a model and run a predictionimport xgboost as xgb class MyModel(object): def __init__(self): self.bst = xgb.Booster({'nthread':4}) self.bst.load_model("xgboost.model") def predict(self,X,features_names): dtest = xgb.DMatrix(X) return self.bst.predict(dtest)
MXNet
Output a model file
mx-model___
model_prefix = 'mx-model' checkpoint = mx.callback.do_checkpoint(model_prefix) mod.fit(..., epoch_end_callback=checkpoint)
MyModel.py
, load a model and run a predictionimport mxnet as mx from PIL import Image import numpy as np from io import BytesIO class MyModel(object): def __init__(self): model_prefix = 'mx-model' epoch_num = 2 self.model = mx.mod.Module.load(model_prefix, epoch_num) data_shape = [("data", (1, 28, 28, 1))] label_shape = [("softmax_label", (1,))] self.model.bind(data_shape, label_shape) def predict(self,X,features_names): imageStream = BytesIO(X) image = Image.open(imageStream).resize((28, 28)).convert('L') data = np.asarray(image) data = np.expand_dims(data, axis=0) data = np.expand_dims(data, axis=-1) return self.model.predict(data).asnumpy()
LightGBM
Output a model file
model.pkl
gbm = lgb.train(...) with open('model.pkl', 'wb') as fout: pickle.dump(gbm, fout)
MyModel.py
, load a model and run a predictionimport pickle class MyModel(object): def __init__(self): with open('model.pkl', 'rb') as fin: self.pkl_bst = pickle.load(fin) def predict(self,X,features_names): return self.pkl_bst.predict(X)
Reference
- https://docs.seldon.io/projects/seldon-core/en/latest/python/python_wrapping_docker.html
- https://github.com/SeldonIO/seldon-core/tree/master/examples
- https://docs.seldon.io/projects/seldon-core/en/latest/wrappers/language_wrappers.html
- https://docs.seldon.io/projects/seldon-core/en/latest/python/python_component.html
- https://docs.seldon.io/projects/seldon-core/en/latest/workflow/serving.html